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An asymptotic approach to the mathematical modeling of Ohno
continuous casting of cored rods
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Abstract. A model is presented to simulate Ohno Continuous Casting (OCC) of cored rods. Equations describing
the axisymmetric transport of heat in the mold and cored rod are discussed. Heat transfer between the system
and the surrounding environment is assumed to take place via convection. If the velocity of casting, the external
temperature profile, the mold temperature, and the mold-cooler distance are given, asymptotic solutions for the
temperature profile in the rod are found and expressions for the solidifying interfacial shapes are developed in the
limit of a small melt slenderness ratio (mold radius/mold length). The effect of process parameters on the shape of
the cored rod system is investigated.

Key words: asymptotic expansions, Ohno casting, heat transfer, metal casting, solidification.

1. Introduction

The Ohno Continuous Casting process (OCC) (developed by A. Ohno at the Chiba Institute
of Technology in Japan) is used to grow single crystals and to produce cored materials with
unidirectional crystal structure [1-10]. This process differs from conventional continuous
casting procedures in that molten metal is poured into a heated mold, rather than one that
is cooled. The OCC mold has a temperature slightly higher than the solidification temperature
of the metal. See Figures 1 and 2. The crystal growth may then occur near the exit of the mold.
This practically eliminates friction between the mold and cast product, which often results in
tearing or pitting of the cast surface. The heated mold also makes it possible to place a hollow
mandrel within the mold [4, 9], through which liquid core alloys are fed to produce a core
product with unidirectional columnar crystals in the longitudinal direction of the cast.

The OCC process is currently being implemented in a variety of commercial applications.
For example, the OCC technique is being used to cast 8 mm diameter rods of 18 karat gold
alloys that have been successfully drawn to wires-86@nm in diameter, which could not
otherwise be produced by conventional methods [9]. Single crystal copper wires of different
diameters have been grown for use as conductors in audio and video equipment [9]. The
process has also been used to produce copper tubing products with internal fins and partitions
for applications such as heat-exchanger tubes and induction coils [1], and has been applied
to the manufacturing of tubes containing optical fibers. Optical fiber sensors have been con-
sidered in the design and construction of modern structures such as bridges, buildings and
hydroelectric dams. They can be attached to the surface of, or embedded into these materials
and structures and used to continuously monitor physical conditions such as damage, strain, or
temperature [10]. In these applications a metallic cladding for the fiber is needed to protect it
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Figure 2. Double channel mold-rod system. The shaded regions denote the solid core and cladding.

from the harsh environment. The OCC technique offers an alternative to coating and chemical
vapor deposition (CVD) processes to produce the outer cladding.

This study will consider casting a pure-tin-clad layer outside of a core of Sn-Pb eutectic
alloy. The objective of this study is to obtain an understanding of the casting of cored materials
using a heated double-channel OCC mold. A schematic of this OCC process is shown in
Figure 1 [9]. The equipment consists of two crucibles for melting and containing the pure tin
and the Sn-Pb alloy, level control devices, a withdrawal device for the cast rod, and a double-
channel mold, which is 40 mm long, has an outer channel with a 10 mm bore which defines
the rod diameter, and an inner channel 10 mm long, created by the mandrel,switindnner
diameter and 5 mm outer diameter, which determines the core diameter of the cast product [4].

The key to this method is the use of the double channel mold, with a mandrel placed inside,
as shown in Figure 2. The core alloy is fed through a hole in the mandrel, and then into the
tube created by the mandrel, with the clad material passing on the outside of the mandrel. The
mold permits a single casting operation to produce cored materials whose core and cladding
contain unidirectional structures.

The purpose of this paper is to determine the location and shape of the solidification fronts
in both the core and clad materials. Slight changes in these locations significantly affect the
quality of the cast [6]. First, the location of the clad front is important because, if it is located
far into the mold, the friction created with the mold can cause tearing to occur on the outside of
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the cast rod. Hence, it is desirable to set the processing parameters so that this front is as close
as possible to the mold exit. Then again, it cannot be too close to the exit, because mechanical
vibration and hydrostatic pressure can cause the diameter of the growing rod to vary, which
leads to a non-constant cross-sectional area in the final rod [4, 10]. In addition, the core must
solidify to the right of the mandrel or there will be a hollow channel between the cladding and
core. The remainder of this paper will consist of the development and subsequent testing of a
mathematical model of this system.

There has been an extensive amount of investigation in the literature of Stefan-type prob-
lems [11-30, for example], directional solidification configurations [31-40, for example], and
conventional casting [41-57, for example]. Exact solutions to these classes of problems are
generally restricted to unbounded domains, and subject to limitations on the boundary condi-
tions (for example, constant temperature). For this reason, a variety of approximate analytical
and numerical approaches have been developed to examine domains and boundary conditions
which more closely simulate actual processing conditions.

Analytical approaches have generally been concerned with one-dimensional, planar inter-
face, time-dependent models, or two-dimensional, steady-state models. In the former category,
recent Stefan-type investigations have posed a variety of convective and radiative condi-
tions at the upper and lower boundaries. Series expansion [16], similarity solution [23, 26],
Laplace transform [20, 25], and Green’s function techniques [21] have been used to solve these
problems. There have also been quasi-steady models [13, 14] which employ perturbation ex-
pansions in powers of a small parameter, which is inversely proportional to the latent heat, and
small in magnitude, due to the relatively large value of the latent heat. These one-dimensional
analyses have generally investigated pure-systems, rather than alloy systems.

The two-dimensional analytical models incorporate side-wall heat transfer and lead to
more realistic nonplanar solidification fronts. It is generally believed that one wishes to set the
processing conditions to minimize front curvature so as to minimize transverse temperature
gradients (hence, thermal stresses) and solute segregation. These two-dimensional models
give some insight into the interplay between transverse and axial heat transfer in establishing
the front shape. For Ohno casting, these issues are more relevant for the core fiber than the
protective cladding, since the fiber quality is of primary interest. Brattkus and Davis [33] used
a very successful steady-state asymptotic approach to investigate two-dimensional solidifi-
cation. This approach consisted of expansions in a small aspect ratio, and a boundary layer
analysis near the solidification front. The method has been employed successfully in pure and
alloy systems, because most processing configurations seem to be characterized by a small
aspect ratio. This approach is readily adaptable to ampoule and containerless geometries [39,
40]. The analysis which follows also makes use of this approach.

2. Derivation of the model and nondimensionalization

2.1. ASSUMPTIONS

We make the simplifying assumption that the mandrel has zero thickness, and seek steady-
state solutions. The system is assumed to be axisymmetric with respect to the horizontal
midline in the core, denoted in Figure 27/as- 0. Our approach is to use asymptotic methods

to reduce the steady-state, coupled set of partial differential equations, which govern the heat
transfer in the cladding and core, to a coupled set of ordinary differential equations. Following
[33, 39, 40], we accomplish this by taking advantage of the disparity between radial and
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axial length scales. We define a melt slenderness ratie, Rc/ M, where R is the radius

of the cladding andV is the length of the mold region. Here,is the small parameter in

our asymptotic expansions. For the data listed in Tabke,0.-125. To assess the range of
validity for our results will require a comparison with numerical simulations and experimental
data. We are unaware of any such simulations or data for a cored rod system. However, [2,
5] present results for a single material rod system. They calculate isotherms, parabolic in
shape, which appear to be in agreement with our analysis. They also conclude foe small
systems, that two-dimensional models give quite reasonable results. Furthermore, they find
that buoyancy driven convection in the melt has a negligible effect on system heat transfer in
smalle systems. This is because the Grashof nuntber??) is below critical due to the thin
domain and relatively small difference between the input melt temperature and melting points
of the core and cladding. Hence, we neglect buoyancy-driven convection in the analysis to
follow. Thus, the melt motion is due solely to the forced input flow and conservation of mass
caused by the pulling of the solidified rod.

Finally, we neglect thermal contraction of the metals after solidification and assume perfect
thermal contact between the cladding and mold and between the cladding and core. A more
complex model is required to include possible air gap formation and subsequent reduction
of heat transfer due to contraction upon cooling. This is an area of extensive research in
conventional casting [44-57].

Table 1. Input data

Parameter  Value Units Parameter  Value Units

Tc,, 50506 K ksgr 05 wem k-1
TRy, 45616 K 14 18 mm mirr L
Texit 513 K h. 075 Wenr2 K1
fhot 535 K Iy 01 wem2 K1
fcold 295 K e 075 Wenm2 K1
Ry 2.5 mm Lpe 176 kJkgt

Re 5 mm Lpg 1959 kJkg!

M 40 mm L 60 mm

a 1 - W 70 mm

b 022142 - Kc 01827 cnfs 1

6o 0 - KR 043313 cmds!

f 2133 - Ksc 038318 cms !

d -6.933 - KSR 046140 cms!

¢ 5.6 -

ke 0-326 wenrlk-1

ksc 0-607 wemlk-1

kg 05 wenm k-1
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Figure 3. Region definitions.

Thus, using smalt and given the rod casting velocity the input clad and core melt tem-
peratures, the external temperatures, and the material properties, we derive approximate ana-
lytical solutions for the temperature fields in the cladding and core, as well as for the shapes
of the solidifying clad and core interfaces. These solutions help to describe the parametric
dependencies within the Ohno casting system.

2.2. GOVERNING EQUATIONS

Since there are different regions to be considered, the following subscripts will be used. A
subscript ofC will denote any quantity relating to the clad region. Rrwill denote the core
region andS denotes a solid substance. A tienotes a dimensional quantity. In the analysis

to follow the solidifying free boundaries will be defined by

h(r) =lc + H(r) 2.1)
for the cladding, and
gr) =z + G(r) (2.2)

for the core region. The unknown constahtgndic are the mean positions of the interfaces,
as shown in Figure 3. The unknown functioAr) and G (r) represent the deviations from
planarity.

In order to take advantage of a small melt slenderness ratio (melt radius/melt length), we
scale the radial coordinates By and the axial coordinates by. Thus, we let

2= Mz, 7 = Rer, h = Mh, g:]\;lg,
R R R R A o (2.3)
lc =Ml g = Mlg, H =R¢H, G = RcG.
Temperature fields are scaled as follows:
7Awi = (bhot — Ocold) Ti + Ocold, (2-4)

wherebnet is the input melt temperature amfighq is the far field(z — oo) temperature. We
scale the melt velocities by the draw rafe
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The nondimensional governing equations are

1
e?Pa-VeTe, = Tc,, + ~Tc, +e%Tc..,  0<z<h(r),R <r<1, (2.5)
r
2 1 2
e? P& VrTk, = T, + ~Tg, + &°Tk.., 0<z<g),0<r <R, (2.6)
. p .
2 1 2
e“P&cTsc, = Tsc,, + =Tsc, + e Tsc,,, h(ry <z <oo,R, <r <1, (2.7)
r
2 1 2
e“Pe&rTsg, = Tsg,, + —Tsg, + & Tsr,., g(r) <z<o00,0<r <R, (2.8)
p .

where Pg, Pe;, Pg, and Pgy are the Peclet numbers for the various materials. The Peclet
number is defined to be Pe- VM/K[, for the different values of the thermal diffusivity;,

i = C, R, SC, SR. Since the Peclet numbers are on the order of 10 magnitude, the heat
transfer is conduction-dominated.

Due to the smalk approximation and low Reynolds number, the melt flow profiles will
be fully developed away from the entrance region and away from the interface locatigns at
andlz. Hence, in Equations (2.5) and (2.6) we include only the axial melt veloditieand
Vk. Assuming the input melt velocities are uniform flows with sp&gdve write the velocity
profiles V¢ and Vg in the formV;(r) = V;(r) + 1 with

1 R
/ Verdr =0, / Verdr =0 (2.9)
R, 0
by conservation of mass. Further, we exp@gt: 0 after the mandrel ends, since the core
interface solidifies with rat& and the solid cladding moves at this same speed.

2.3. BOUNDARY CONDITIONS

In determining the boundary conditions, it is necessary to divide the system into three regions,
each with one or more sections. The region divisions are at critical valugsTbis scheme
is illustrated in Figure 3.

The boundary conditions at the centerliner 0, are

Tx, =0, Tsg, = 0. (2.10)

Atr = R,, R, = R./R¢, we impose continuity of heat flux and temperature,

k . .

k—CTc, =T, Tc = Tk, inregion 1 (0 < z < h(R))) (2.11)
R

k . .

k—c sc, = Tk, Tsc = Tk, inregion 2 (h(R,) < z < g(R,)) (2.12)
R

k . .

ﬁTSC, = TSR,a Tsc = Tspg, In region 3 (g(R)) <7 <00). (213)

ksr
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Herek;,i = C, R, SC, SR, denotes the thermal conductivities.
Along r = 1, the boundary of the clad region, we have the energy balance for heat transfer
between the liquid and solid clad regions and the surrounding environment. This is defined by

Tc, = Bc(©(2) — To), (2.14)
Tsc, = Bsc(©(2) — Tsc), (2.15)
wheregc = h%Rc¢/ke and,

R R

if I 1
ksc c=<=

Bsc = if L<z<W (2.16)

<4 — fl<z<UL,z>W

are the Biot numbersiy., i and i} represent the heat transfer coefficients between the
solid cladding and mold, water spray, and air, respectively,) is a function that describes
the outer temperature field. This temperature field is a piecewise function on the interval
[0, o). It describes the temperature in the heated mold, followed by the air cooling zone, the
water spray zone and then the final air zone. The definitio® @f) will be given shortly.
We note that radiation is negligible, due to the low surface temperatures [5]. In Equation
(2.16) we set different definitions of the Biot number for the zones shown in Figure 3. These
zones represent heat transfer between the solid cladding and(fpold z < 1), between
the solid cladding and water spr&l. < z < W), and between the solid cladding and air
1 < z < L,z > W). This is consistent with the findings in [5]. While [5] presents a
continuous model for the variation of the heat transfer coefficient over the zones, we use
averaged values of the data in [5] to define the constant heat transfer coefficients in each zone,
as listed in Table 1.

Further, by taking these Biot numbers@s¢l) quantities in the analysis to follow, we find
that perfect heat transfer occurs along the boundaries. Hence, the temperature of the rod be-
comes identical to the imposed external temperature profile under the steady state assumption.
Thus we pose that the Biot numbers @rés?) quantitiesj.e.,

Bc =e’Bc.  Bsc =€ Bsc. (2.17)

This scaling is not necessarily satisfied by the data listed in Table 1. However, [5] presents a
comparison between numerical simulations and a one-dimensional control volume approach,
derived under the assumption of a small Biot number. This comparison demonstrates that
the control volume model leads to reasonable predictions for the thermal profile in slender
rods given by the data in Table 1. Hence, we pose Equation (2.17) and follow the asymptotic
analysis of directional solidification systems for small aspect ratio domains presented in [33,
39, 40]. We note that a similar asymptotic procedure, also relevant for small surface heat
transfer, is presented in [58, 59]. In this procedure, the asymptotic expansions are developed
in the limit of a small surface heat transfer parameter. We could have recast our model into
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this framework. In this context the data in Table 1 results large small parameter. Never-
theless, our conjecture is that it is reasonable to proceed with these small surface heat transfer
approaches, based upon the comparison in [5].

In essence, the scaling in Equation (2.17) leads to a balance between axial and radial heat
transfer in Equations (2.5)—(2.8) at(s?). Thus, Equations (2.14)—(2.15) become

Te, = e°Bc(O®(z) — T¢), (2.18)
Tsc, = £2Bsc(©(z) — Tsc). (2.19)

At z = 0 we have,

Te=1  Tr=1 (2.20)
AS 7z — o0,
TSC — 0, TSR — 0. (221)

At the solidifying core frontz = g(r) = Iz + ¢G(r), we have,
Tg = Try = Tsr, (2.22)
and at the solidifying clad front, = h(r) = Ic + ¢ H(r), we have
Te = T¢,, = Tsc. (2.23)
HereT,,, andTg,, are the scaled melting points. Energy balances at these fronts are given by
Kc(eTsc. — Tsc, H,) — (eTc, — Tc, Hy) = —¢ St Per, (2.24)
Kr(eTsg. — Tsgr, G) — (eTg, — Tg, G,) = —& Stg Pe&g, (2.25)

where,K¢ = ksc/kc, Kg = ksg/kgr, and S¢ = L,./c, AT, Stg = L,,/c,, AT are the
Stefan numbers. The constanfs andc,, are the specific heats, atdl" = 0ot — Ocoid- L p»
L,, denote latent heats per unit volume.

Two other equations are obtained from integrating Equations (2.1) and (2.2),

1
H(@)rdr =0, (2.26)

Ry
R,
/ G(r)yrdr =0. (2.27)
0

These equations are needed since both the mean value positions and the deviations from
planarity are unknown.
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3. Asymptotic analysis

As in [33, 39, 40], we expect boundary layers to appear near the interfaces between the liquid
and solid phases. In these regions, the axial and radial heat transfers balance to set the shape
of the solidifying fronts.

3.1. THE OUTER PROBLEM

The outer problem occurs in the regions away from the solidification fronts. We assume
straight forward asymptotic expansions for the temperatures. These are defined as follows

T, = Tyy + 6Ty + &%T, + -, (3.1)

wherei = C, R, SC, SR and each of the subscripted temperature quantities are functions of
r andz. Also, at the interfaces, we assume the asymptotic expansions

H(r) =¢e¢Ho+ e’H1+ e3Hy + - - -, (3.2)
G(r) = £Go+ %G1+ 63Go + - - -. '

These orders, the nondimensionalized versiongof andg (r), and scalings in Equations
(2.17) are consistent with the above discussion concerning axial and radial heat transfer bal-
ance. It will be shown in the analysis to follow, that radial heat transfer appeadgsaj.
Because of the axially dominated heat conduction, the interfaces are nearly flat, as described
by the ordering in Equation (3.2).

Substituting the above expansions in the governing Equation (2.6) in the liquid core region
we find, atO (1),

Tro(r, 2) = Apry(2)109(r) + Bry(2), (3.3)

whereAg, (z) andBg,(z) are unknown functions to be determined by the boundary conditions.
From (2.10), it follows that

Try(r, 2) = Bgy(2). (3.4)
Similarly, atO (¢), we find that
Tg,(r, 2) = Bg,(2), (3.5

whereBg, (z) is also unknown.
At O(¢?) the governing equation is

1 ~
Tk, + ;TRZ, = —(Try, — P&(VR(r) + DTk, )- (3.6)

Upon integration, we find that

1’2 " / / "1 Y
Too(r, ) =~ (B, — PexBly) + Pex By, /0 . /0 Teydydr + B, (3.7)
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where’ denotes differentiation with respect 4pand we have used (3.4) and a boundedness
criterion. FurtherBg,(z) is another unknown function af A similar solution process in the
liquid clad region gives

Tey(r, 2) = Bey(2), (3.8)

Tcl(", Z) = BCl(Z)’ (39)

2

1 _
Te,(r,2) = (== + Zlog(r) ) (B, — Pe-Bi,) +10g()Be(©(2) — Bc,)
4 2

r 1 X -
+P9cB’co/ ;/ Ve(y)ydy dx + Bc,, (3.10)
R, R,

where we have used Equation (2.18), and wiigfei = 0, 1, 2 are all unknown functions of
Z.
The solutions in the solid regions are determined in similar fashion, and found to be:

TSRo(r’ Z) = BSRO(Z)! (311)

TSR]_(r’ Z) = BSR]_(Z)v (312)
I"Z

Tsp,(r,2) = —Z(BgRo — PesrBig,) + Bsr,(2), (3.13)

Tsc,(r, 2) = Bscy(2), (3.14)

TSC;[(ra Z) = BSCl(Z)’ (315)

2

r 1 " /
Tsc,(r,z) = (—Z + > |09(r)) (Bsc, — P&cBgc,)

+109(r) Bsc(©(z) — Bscy) + Bsc,- (3.16)

Again, the termsBg, and Bsc, are unknown functions af. We have not yet used the temper-
ature and heat flux conditions (2.11-2.13).At1), (2.11) implies that

Bgy(2) = By (2). (3.17)
At O(¢), we have

Bg,(z) = B, (2), (3.18)
and atO (¢?), the two conditions yield the following ODE fdBc,(z),

Bgo — BlB/Co — ClBCO = —C]_@(Z), (319)
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where
R2(—kc Pec + kg Peg) + ke P
Bi—— o ( czet+ r P&) + k¢ Et’ (3.20)
Re(ke — kg) — ke
_p
Cr = cBc

" R2(ke — kg) — k¢’

In the above, we have used Equation (2.9). Hence, in this solution procedure, the details of
the fully developed flow are averaged out over the radial direction and the system responds
as if the melt velocity is a uniform flow with spedd. For this reason, we shall ignore the
flow details in the remainder of this analysis, and assume uniform melt velocities in the core
and clad melt. Thus, Equation (3.19), defining the leading order temperature field in this
asymptotic approach, is the type of one-dimensional equation one derives when performing
a heat balance using a control volume approach [5]. However, the asymptotic framework
presented here allows one to derive two-dimensional corrections. We shall comment on the
range of validity of the leading order one-dimensional approximation below. For region 2, as
in Figure 3, the set of boundary conditions (2.12, 2.19) produce a similar ODEsfgr

Bgc, — B2Bgc, — C2Bsc, = —C20(z) (3.21)
where
R?(—kgc P kg P ksc P 2ksc B
By = — “(—ksc Z%C + kg P&) + ksc esc’ Cr=—— scBsc . (3.22)
Re(ksc — kr) — ksc Re(ksc — kr) — ksc
Finally, in region 3, Equations (2.13, 2.19) yield
Bc, — B3Byc, — C3Bsc, = —C30(2), (3.23)
Bs— — R?(—ksc PZQ;C + ksg P&g) + ksc P%‘C, (3.24)
Re(kse — ksr) — ksc
ok
Csm scBsc

a R2(ksc — ksg) — ksc

The constantg”; and B; in Equations (3.20, 3.22 and 3.24) represent conduction-averaged
Peclet and Biot numbers, respectively. Hence, the system behaves as if the cladding and core
combination has been replaced by a single material with the effective properties defined by
these constants.

In the previous equations, (3.19), (3.21) and (3.23), the forcing t@rg) describes the
temperature field outside the rod. We defihg;) piecewise as follows

a+ bz, O0<z<1
fo, l<z<L

O() = - - _ (3.25)
f?+dZ+é, L<z<W

Bo, W<z < o0,



62 S. A Mormanand G. W. Young

wherea, b, 6y, f,d, andé are all constants listed in Table 1. The four zone®¢f) represent

a linearly decreasing temperature field in the mold region [2, 5], the ambient air tempégature
between the mold and water spray, the water spray temperature, and the ambient zone after the
water spray. The parabolic model in the water spray is used to simulate variable heat transfer
in this region [5]. In dimensional units, the water spray changes fror€ 28z = L and

z = W, to 14 C at the midpoint betweeh andW.

The solutions of Equations (3.19, 3.21, 3.23) provide the leading order temperature pro-
files. These one-dimensional approximations will be valid, provided the radially dependent
correction terms in Equations (3.7, 3.10, 3.13, 3.16) are small in comparison to these approx-
imations. As a crude estimate of such a comparison, we consider the limiting case of equal
thermal conductivities. Thus, th& andB; in Equations (3.20, 3.22, and 3.24) reduce to Peclet
numbers and Biot numbers, respectively. The coefficients of the radially dependent terms in
Equations (3.7, 3.10, 3.13, 3.16) are then related to the third and fourth terms in Equations
(3.19, 3.21, 3.23). Hence, it can be shown that the radially dependent correction terms are
small in comparison to the leading order one-dimensional temperature fields provided that
B:(®(z) — B))/2B; <« 1,i = S, SC, which means that the radial heat transfer is small
in Equations (2.14, 2.15). In deriving the above, we have used Equation (2.17). For Ohno
casting, the comparison between the ambient temperature and the temperature of the rods
satisfies(®(z) — B;)/B; < 1, by design. Thus, the one-dimensional approximation is valid
for B; « 2. This is satisfied for the data in Table 1, although Equation (2.17) is not necessarily
satisfied. Hence, the validity of the one-dimensional approximation extends somewhat beyond
this strict ordering. We also point out that if the Biot numbers are large, then the conStants
i = 1,2 3 are large. Hence, the Equations (3.19), (3.21) and (3.23) lead to solutions where
the temperature fields approa@liz). This is consistent with the earlier discussion concerning
the orders of approximation given in Equation (2.17).

Inregion 10 < z < ¢, the governing ODE is (3.19). The boundary conditions are

B, (0) = 1, Bey(le) = Tcy,- (3.26)

The former follows from Equation (2.20), and the latter from (2.23). This ODE is solved to
obtain

By (2) = 1 €'Y + o €% 4 y1 4 yoz (3.27)

where

Bi+,/B?+4C, By —/B? +4C,

n,y = 2 N np = )

a+ Bib
yi= =, y=b, (3.28)

C1

(A —yyee — (T, — y1— yole) _ (Tey, — y1— yole) — (1 — yy) @le
$1= g@nrlc _ gnlc P2 = gnrlc _ gnlc ’
Referring to Figure 3 and the piecewise definition@(fz) in Equation (3.25), we solve

Equations (3.21) and (3.23) by splitting these equations into five zénesz < 1,1< z <
Ig,lr <z <L, L <z < W,andW < z < oo. We refer to the solutions in these zones
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yary Layers

Figure 4. Boundary layers.

asBg,, B2 Bir, Bord, Byyy, respectively. Continuity of temperature and heat flux are
used as the boundary conditiong at 1 (the mold exit), and at = L (the water spray zone).

At z = Ic we impose the conditioB (. = T¢,,, atz = Iz We imposeBye. = Tg, = Bie, -
These are derived using (2.22) and (2.23).zAs oo we useB{y. = 0 which follows from
Equation (2.21). The details of the solution can be found in [60]. We note that the forms of
the ODE solutions are similar to Equation (3.27) and that the constants (syghaasl ¢,

in Equation (3.27)) are functions &f andlg, the mean positions of the solidification fronts.

These positions are still unknown and are determined in the boundary layer analysis to follow.
3.2. THE INNER PROBLEM

The inner problem deals with the areas close to the interfaces, as shown in Figure 4. In these
regions, we have not yet satisfied the latent heat equations (2.24, 2.25). At this point, one
could substitute the leading-order temperature fields in Equations (2.24, 2.25) and develop
coupled equations for the mean interface locatigngndiz. However, determination of the
non-planar correctiondy (r) andG (r), requires a boundary-layer analysis. Hence, we define
two boundary layer coordinates,= z — I./¢(e) andn = z — Ig /¥ (e).

Note that in Figure 3, region §, — —oo to the left of the boundary layer at= I,
and in region 2§ — oo to the right of the boundary layer; behaves similarly in region
2 nearz = l;. The boundary layers appear in both the clad and core regions, so there are
four temperatures we must resolve near each boundary layer. We @efamel 7 to be the
boundary-layer temperatures in the cladding @pdand T in the core region. We find that
@(e), andyr(e), the boundary-layer thicknesses, are both of o@dér), which allows us to
retain the axial heat transfer terms in Equations (2.5-2.8). We then pose,

i}:i}0+8ﬁl+82ﬁ2+...’ (329)

wherei = C, R, SC, SR.

First we examine the boundary layer néarWe adopt a superscript notation denoting the
region that the particular temperature is associated with (1 for region 1, etc.). Equations (2.5)
through (2.8) become,

~ 1.~ ~ ~
Ty, + =T + Ty = e PaeTy). (3.30)
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-~ 1.~ -~ ~
Ty, + Ty + Ty, = e PacTy. (3.31)
~ 1~ ~ ~
Tcrr + ;Tcr + TCEE =¢& PQ:‘TCE, (332)
-~ 1.~ ~ ~

2 2 2 2
Ts? + ;ngr + T2, =ePecl?, (3.33)

In the above we have assumed a uniform melt velocity, as discussed in the outer problem.
While this is not actually the case, due to no-slip along the mold and mandrel walls, we
impose this condition for simplicity.

We list only those boundary conditions that are referred to in the analysis to follow.

At the solidification front§ = ¢ H(r), we have the conditions,

Ty =T2, T = T2, (3.34)
Te =Te, =T, (3.35)
Kc(fga ~ T2 H,) — (T¢, — T, H,) = — StcPer. (3.36)

Finally, we have the matching conditions,

Nim (T — ")y =0, Jim (T — ) =0,
i 0 (3.37)
JNim (Tc—1e)=0,  Jim (Tsc - &) =o.

Similarly, in the boundary layer region neate= [, we assume a uniform melt velocity as in

the outer problem discussion. Néar this is reasonable, since the solidification rat¥ iand

since the solid clad moves at this same velocity. The governing equations are then similar to
those listed nedg. At the solidification fronty; = ¢G(r), we have

(2 =3 (2 (3

Tgo = Tge., Tge = 15, (3.38)
Ty = Try = Tox, (3.39)
Ki(Tsg, — Ts, Gy) — (T, = TY'G,) = —& St Pex. (3.40)

Finally, we have the matching conditions,

lim (T — T{%) =0, lim (Tsg — Tsg) = O,
n—>—00 n—00

_ -2 _ . (3.41)
nﬂrpoo (Tsc — Tg¢) =0, nlmo(Tsc —Tgc) =0.

The matching conditions (3.37) and (3.41) require the outer solutions. Substituting Equations
(3.4), (3.5), and (3.7), in (3.1) we find that

2
Tr(r, 2) = Bgy(2) + & Bg, (2) + & [—%(B}éo — P& By)) + BRz(Z):| +---. (3.42)



Ohno continuous casting of cored rod$65

Similar expressions are developed 1e1(r, z), Tsk(r, z), andTsc (r, z). The matching process
requires that we write these outer solutions in terms of the inner variabl@sd . Using
Equation (3.42), we have that in the liquid core.

2
Tr = Bgy(lc) + e(Bg,(c) + gBﬁeo(lc)) + &2 |:BR2(ZC) + ¢Bj (o) + 5 B%O(lc)
2
B0~ Pey B;e(,(zc))} e (3.43)

This can be repeated with the other temperature fieldsneaf: andz = Iz. From here
one can determine the matching conditions at various orders.
The solutions to the leading-order boundary-layer problem neai. are given by

T = T2 = Bpy(lc), (3.44)
Teo = Ts%, = Bco(lc) = Bsco(lc) = Tcy- (3.45)

Via a similar analysis at the boundary layer neat [ we find, using the leading order, that

Tig = Tsry, = Bro(lr) = Bsro(lr) = Try» (3.46)
Tia, = T52, = Bsco(lp)- (3.47)

Solving theO (¢) problem, we find that

T 6) = T2 (r, €) = Bl () - &, (3.48)
Te,(r. £) = Bg (o) - £, (3.49)
Tse,(r &) = By, (lc) - &, (3.50)
T (r,n) = By (g) - 1, (3.51)
Tsry(r, n) = Bigy(lg) - 1. (3.52)
T2 (r.m) = T32 (rom) = B, (Ir) - 1. (3.53)

For O (¢), the latent heat conditions, Equations (3.36) and (3.40) become

KeBS&P (o) — Bpy(le) = —Ste Per, (3.54)
KxBS2(Ix) — Bgy(x) = —St Pex. (3.55)

Equations (3.54) and (3.55) are two coupled nonlinear equations for the mean solidifying
positionsic andlg. The coupling occurs since the outer solutions feg, Bz and B>
are functions of botlic andly, as discussed previously. Maple was used to solve (3.54)
and (3.55) forlc and k. Contour plots of Equations (3.54) and (3.55) overlarand iz
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Figure 5. Temperature profile in the clad melt and solid regions.

neighborhood around the mold exit appear to reveal a unique solution in this region. For the
data listed in Table 1, we find that = 0-8088 (32352 mm), andz = 1.316 (5264 mm). A

plot of the temperature profile found in the clad regions is plotted in Figure 5. Notice where the
function intersects the two horizontal lines. The top line is the melting temperature of the clad
region, and the bottom line is the melting point of the core. These intersection points represent
the mean positions of the solidification frontgs,and!l, respectively. Further discussion of
these results will take place in the section on parametric studies which follows. As a final note,
the above boundary layer analysis is not necessary if we are only interested in determining the
mean planar locations. Equations (3.54) and (3.55) follow from (2.24) and (2.25), using a one-
dimensional analysis. The boundary-layer discussion above is presented only as a consistent
development for the next section.

3.3. DEVIATION FROM PLANARITY

Now that we have determined the mean positions of the interfaces, our focus is on determining
the correction factors associated with each interfacial shameH (r) and G(r). We will
accomplish this by continuing the asymptotic analysi®©i@?), and making use of Equation
(3.2).

In regions 1 and 2, we list some of the equations to be solved.

~ 1. ~ ~
(1) (1) () _ (1)
Tiy + Ty + Ty = PeTy). (3.56)
~ 1. ~ ~
(2) (2) 2 _ (2)
Ty, + ;TRz, + TRZss = Pe; Tng. (3.57)

In order to simplify these and obtain a simpler version of the matching condition Equation
(3.37) atO(£2), we define the modified temperaturds.’ and7,? such that

T 52 " / 1’2 " / T

Ty, . &) = 5 Byo(lc) + & B (Ic) + Bry(lc) — (B (c) — Pex By (i) + T, (3.58)
7(2) 52 " / 1’2 " ’ 7(2)

Ty, (r,§) = EBRO(IC) +&Bg,(Ic) + Br,(lc) — Z(BRO(IC) — P& By, (lc)) + Tz~ (3.59)

The form of these substitutions is motivated by Equation (3.43) which is used in the match-
ing process. Similarly, in the outer regions we develop expressionk-for, &), TS((Z:)Z(r, &),

Tg)(”, 77)1 TSRz(ra 77)1 Tg(?z(r, 77)1 andf;g)z(ra 77)
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By defining the solutions in this way, we develop the following set of equations for the
modified temperaturef . The equations near= [~ become

_ 1-_ _

Tg) + >T) +Tp) =0, (3.60)
_ 1-_ _

T+ =T + T2 =0, (3.61)
_ 1-_ _

TCrr + ;TCr + Tng = Oa (362)
2 1z | 7@

Tsc,, +~Tsc, + Tse,, =0, (3.63)

subject to the matching conditions

lim 7Y = lim 7% =0, lim 7¢ = lim T2 = 0. (3.64)
&£—o00 &£——00 &£—o00

&——00

As stated previously, the simplicity of the matching conditions motivates the change of vari-
ables listed in Equations (3.58)—(3.59). The other boundary conditions are

T =0=T¢%, atr=0, (3.65)
rpo_g. O,

Ik =T r =Tc, (3.66)
ke

kp - - - -

LT2=T2, T =1 atr=R, (3.67)
kSC r r

TC, =0= TSC,, atr =1 (368)

Also, by integrating Equations (3.60)—(3.63) with respeetawer their appropriate-domains
and using (3.64)—(3.68), we find that

R R
/ Tl(el) crdr = / Tlgz) -rdr =0, (3.69)
0 0

1 1
/ Tc-rdrzf TS((Z:)-rdrzo.
R R

These expressions will be used in the final searchHgrand G, as defined in (3.2). The
remaining boundary conditions are those defined at the inteéfaees H (r), in Equations
(3.34)—(3.36). Using Equation (3.2) and Taylor series expansions, we define the following
boundary conditions at this interface

2

/ r " / T
—HoBj,(lc) = Br,(lc) — (B, (Ic) — Pex By, (o)) + T, 0), (3.70)
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2
/ r 1" / 7
—HoBj,(lc) = Bry(lc) — (B, (lc) — Péx By (Ic)) + T (1, 0), (3.71)

—HoBg,(Ic) = Be,(lc) +109(r)Bc(Oc) — Bey)

log(r) r?
+< 2 4

) (B¢, (c) — Pec By (le)) + Te(r, 0), (3.72)

—HoBjc,(lc) = Bsc,(lc) + log(r)Bsc (®(c) — Bscy,)

| 2 ]
+ ( ng(r) - %) (Bic,(Ic) — Pesc By, (Ic)) + T2 (r, 0), (3.73)

kT2, — Te, =0, (3.74)

In the aboveBg,(I¢), Be,(lc), and,Bsc,(I¢) are unknown quantities. We determine these by
multiplying the Equations (3.70)—(3.73) lyand integrating over the appropriatedomain.
The resulting expressions f@x,(/¢), Bc,(¢), and, Bsc,(I¢) are substituted back in (3.70)—
(3.73). After simplifying, we find that

RZ 2 _
—HoBj (Ic) = (é — %) [Bj,(Ic) — Pex By (I0)] + T (1, 0), (3.75)
1 er r2 " 1 +(2)
_HOBRO(ZC) = (? - Z) [BRO(ZC) — Pe& BRO(ZC)] + TR (r,0), (376)
—[1 R?log(R,
—HoBl (Ic) = e [5 + (13—9,22)) + Iog(r)} (©(c) — Beolle)) (3.77)

3+ 4(R? log(R,) — log(r)) — 2(R2+r>)] , )
* [ : 8(1— I?’r;; - } - (Bey(lc) — Pee Bey(Ie)) + Te(r, 0),
L R log(R)

—H()Bgco(lc) = ,3; |:§ + (l — R2) + |09(r):| (®(ZC) - BSCO(ZC)) (378)

3+ 4(R? log(R,) — | — 2(R?+7r? , ) .
n [ (R7 log(R,) — log(r)) — 2( r )} - (Bie,(lc) — Pesc By, (Ic)) + Tsc (1, 0).

8(1— R2)

We can derive similar equations f6fy. The details can be found in [60]. To complete the
analysis forO (¢2), we solve (3.60)—(3.63) using separation of variables.
After applying the boundary conditions, we find the solutions can be expressed as

T €)=Y an €5 Jo(hur), (3.79)

_ Yi(h,
Te(r,&) =) b€ [Younr) - Jigk ;Jo()»nr):| , (3.80)
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T (&) = ) ca€ " Jo(hur), (3.81)

Y1i(An)
J1(An)

T20.6) =Y dyee [Younr) - Jow)} , (3.82)
where Jo, J1, Yo, andY; are Bessel functions and the are the zeros of the Bessel function
J1. At £ = 0, we have the condition thaf,\" (r, 0) = T, (r, 0), so it follows thata, = c,.
Also, from the latent heat condition (3.74), we find that= — K d,,.

If we now multiply Equation (3.77) by, (Ic) and (3.78) byB¢ (Ic), equate them, and
use (3.80), we may solve fdf{2(r, 0). Substituting this in Equation (3.78), we find the
following expression foiHy:

o {ﬂ?(TcM — 0Uc)) + KcBse(Te,, — ®(lc))i| [1 R? log(R,)
0 — X

>t %z T
KCBZ?CO(IC) + B/co(lc) 2 (1— R?) Og(”):|

B B (Ic) — Pec Bi (Ic) + Kc(Bjge,(Ic) — P&c By, (Ic))
KcBe () + B, (c)

2 _ — 2 2
X[3+4(R, log(R,) — log(r)) — 2(R? + R >] (3.83)

8(1— R2)

HO
IS SR TN S S
Solid
Cladding S
T I -
Liquid "
¥ Cladding
Figure 6. Shape of the clad liquid—solid interface. Figure 7. Shape of the core liquid—solid interface.

The numerators in Equation (3.83) represent radial heat transfer near the solidification front
Ic, while the denominators correspond to axial heat transfer near this front. The denominator
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is negative in this case, so that the concavity of the curved isotherm is set by the direction of
heat transfer determined by the temperature differdlage— © (/) in the expression foHj.
For the data listed in Table 1, Equation (3.83) is plotted in Figure 6. This figure corresponds
to the lower portion of the clad region shown in Figure 2. Here the exit temperature of the
mold is 513 K, which is greater than the melting point of tin, which is-B8%K. Thus, the
clad material closer to the mold is hotter than the melting point, so that heat transfers in
radially. The material close to the core is cooler by comparison, due to axial heat transfer.
This accounts for the shape definition in Figure 6, with faster solidification near the core. If
we were to include the flow details nefar, the expression foHy would have an additional
term corresponding to the zero-mass fl&, Young and Chait [39] provide an example of
such an analysis for the float-zone configuration.

Similar to the analaysis faty, we find that

Go = <R2 rz) s | Bl = Pl By ln) + K Brn) = Pan Biro () | 5 g
KB (Ir) + By, (Ir)

This function is plotted in Figure 7. Notice thét, is parabolic in shape, although the
magnitude of the deflection is an order of magnitude smaller than in the clad zone, as in
Figure 6. Neat = I, the heat being transferred in from the clad region heats the core above
the melting point, so near the cladding, the core material is warmer. The middle of the core is
cooler by comparison, so it solidifies quicker. Similar to the discussio#fothe numerator
characterizes radial heat transfer, while the denominator represents axial heat transfer. Thus,
achieving a planar interface requires operating conditions which minimize radial heat transfer
at the front and/or which maximize the sum of axial temperature gradients between the core
liquid and solid phases at this location.

As a limiting case, consider Equations (3.11), (3.17), (3.19-3.22). When the core and clad
thermal conductivities and melting points are equal, the system does not distinguish between
core and clad material. The first two terms of the differential equations in (3.19) and (3.21),
evaluated at = I, are identical to the expressions in the numerator of (3.84). Hence, we can
replace these expressions by the third and fourth terms in (3.19) amd (3.21)asl. The
result is the numerator expressigi,(Tc,, — O (lc))+ KcBsc (Te,, — O (c)), in (3.83). Hence,
Equations (3.83) and (3.84) collapse to the same equation and we have a single material system
with parabolic isotherms and solidification front, which agrees with the numerical simulations
for thin rods [2, 5].

Table 2. Constant veAIocityV =18 mm/ Table 3. Constant initigl temperaturé, =
min, clad thickness,k, = 2-5mm and 575K, clad thicknessk, = 2.5mm, and
mold cooler distance, = 20 mm mold cooler distance, = 20 mm.

TK Ic Ip V- mm/min lc Ip

515 04109 1127 6 05201 1038

530 07464 1283 12 06762 1173

540 08673 1346 18 08088 1316

550 09532 1405 24 09319 1472
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Figure 8. Interface shapes (in mm) taken from the nondimensional data in Table 3.

4. Parametric study

We now examine the system’s response to a change in the various casting variables. As stated
earlier, the materials considered here are pure tin as a cladding, and a Sn-Pb alloy for the core
[4]. The input data used in the simulations can be found in Table 1 [2, 4, 61, 62].

First, let the casting speddremain constant. If we raise the input temperature of the melt,
the position of the fronts should move closer to the mold exit, since it will take longer to reach
the melting point. Likewise, lowering the initial temperature will result in the front moving
farther back into the mold. The results in Table 2 are consistent with this explanation.

Next, we let the initial temperature remain fixed. An increase in the casting velocity should
move the front closer to the mold exit. This happens because the material is moving faster
compared to the axial heat transfer. Likewise, a decrease in the casting speed will result in
the front solidifying further into the mold. These results are reported in Table 3. Figure 8
shows the shapes (in dimensional units) of the solidification fronts. Equations (2.1), (2.2),
(3.2), (3.83) and (3.84), and the results in Table 3, were used to define the fronts. We note
that the temperature isotherms are more parabolic in the mold region and flatter near the water
spray. This is consistent with numerical simulations of Ohno Casting of a single material [2,
5] and reflects that radial heat transfer is largest in the mold region. Additionally, because of
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Figure 9. Locations of the mean glad and core solidi-
fjcation fronts for the fixed valueR, = 2.5 mm and
L =60mm.
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Figure 11. Locations of the mean clad and core solid-
ificatjon fronts for the fixed value¥ = 18 mm/min
andL = 60mm.
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Figure 10. Locations of the mean clad and core solid-
ification fronts for the fixed valueg, = 2.5mm and
V =18 mm/min.
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Figure 12. Locations of the mean clad and core so-
IiAdification fronts for the fixed value¥ = 535K and
R, =25mm.

its smaller thermal diffusivity, the cladding acts as an insulating layer to the core, reducing

the radial heat transfer, as discussed above. The practical implication is that the flat core
solidification front should lead to reduced radial segregation when casting multi-component
alloys. Further, since the core front appears to remain flat over a wide range of processing
conditions, practioners can focus on setting the operating conditions to keep the clad front

near the mold exit.

Table 4. Constant velocityy = 18 mm/
min, clad thicknessk, = 2.5mm, and
initial temperature7 = 575K.

Table 5. Constant velocityy = 18 mm/
min, initial temperatureT = 575K, and

mold cooler distance], = 20 mm.

Lmm ¢ Ir R, mm le IR

55 07971 1291 4.5 07113 1094
60 08088 1316 375 07698 1267
65 08400 1367 2.5 08088 1316
70 08712 1441 1.25 08361 1350

Next, we fix the velocity and initial melt temperature and vary the location of the water
spray. By moving the water spray closer to the mold exit, we expect the positions of the fronts
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Input Melt Temperature K

5 10 i5 20
Velocity mm/min

Figure 13. Operating points to set the Iocationf@f at the mold exit (40 mm) for the fixed valu&s = 2.5mm
andL = 60 mm.

to be farther into the mold. This happens due to an increase in the axial heat transfer. In a
similar fashion, moving the water spray further from the mold exit results in the interface
position moving out toward the end of the mold. The results are listed in Table 4.

Finally, keeping the previous quantities constant, we vary the thickness of the cladding. For
all the earlier examplesﬁ’, = 2.5mm. Notice that the thinner the clad layee., the higher
value ofI@,, the further into the mold the front solidifies. Since the core has a higher thermal
diffusivity, the axial heat transfer is enhanced. The results are listed in Table 5.

Consider the location of the clad and core solidification fronts shown in Figure 9. For
sufficiently large input melt temperature and casting velocity, the position of the clad interface
Ic moves outside the mold (> 40 mm), This is not necessarily desirable. Once outside the
mold, the clad growth occurs in a float zone configuration [8, 10]. This is not accounted for in
this model. On the other hand, if the interface is too far into the mold, the friction caused by
the solid clad material scraping against the surface of the mold will cause tearing of the clad
material. This occurs for slower casting velocities and lower input melt temperatures.

In Figure 10, we see that the position of the water spray also affects the front location,
though not as drastically as do changes in the casting velocity.

In Figure 11, we see that the solidification fronts are sensitive to the clad thickness, due to
the mismatch in thermal diffusivity between the cladding and core. Finally, Figure 12 indicates
that the system is much more sensitive to changes in the input melt temperature and casting
velocity than to changes in the water spray location. Furthermore, the front locations appear
to vary linearly with changes in the casting speed.

The above results are summarized in Figure 13. Using the data from Figure 9, we plot
the input melt temperature and casting velocity which set the location of the clad frant
the mold exit. For operating points above the cufvewill be outside the mold. If we move
the water spray closer to the mold esie. decreasd., the operating curve will be slightly
above that shown in Figure 13. Hence, there is a slightly larger operating domain forfwhich
remains inside the mold.

There are a number of extensions that can be made to this work. Ignoring the mandrel will
definitely change the system heat transfer, and should be examined thoroughly to improve the
accuracy of the model. Also, the effects of fluid dynamics, such as the input liquid pressure,
contribute to the cast quality [1, 6]. Furthermore, the composition of binary systems can
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influence the cast quality [6]. Finally, dissolution between the solid cladding and the liquid
core is an important phenomenon to be considered [4].
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